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Abstract: In the present work two different rules are applied to the system of the inverse pendulum. On the one 

hand, Sliding Mode Control (SMC) is used to control the position and the angular velocity of the pendulum 

attached to the cart. On the other hand, Model Predictive Control (MPC) is implemented in order to control the 

trajectory of the cart in accordance with a desired movement profile. In order to counteract phenomena such as 

"chattering" as effectively as possible, various measures are implemented within the Sliding Mode Control. 
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1 Introduction 
The inverse pendulum represents an underactuated 

system in which the unstable rest position is located 

at the highest point of the pendulum. In order to 

regulate this system, that means to keep the angle 

between the pendulum and the vertical axis minimal 

or equal to zero, the cart can be moved in one axis 

with the help of an applied force. Since the system is 

underactuated, it has fewer actuators than degrees of 

freedom. This type of system is common, including 

for robots [1] [2]. 

Sliding Mode Control, a system based on the 

Lyapunov theorem, provides the ability to regulate 

underactuated systems effectively. In general, SMC 

is a very accurate and robust control system which 

effectively counteracts disturbances both internal and 

external [3]. Due to the computation by means of the 

equations of motion and the associated restrictions, 

the Sliding Mode Control regulates not only the angle 

but also the angular velocity of the pendulum. This 

limitation arises because the force exerted does not 

act directly on the pendulum, but instead on the cart, 

whose movement affects the rotation and the angular 

speed of the pendulum. Both control variables are to 

be regulated to zero, so that the pendulum is in the 

equilibrium position and is moving as slowly as 

possible. 

As a second control system Model Predictive Control 

is introduced to control the trajectory of the cart in 

accordance with a desired movement profile. MPC 

predicts future values for both the state variables and 

the output variables of the system based on 

measurements and a discrete-time dynamic model of 

the process. On this basis, it is possible to calculate 

future results for k time steps in advance [4]. The 

prediction of future behaviour allows the calculation 

of an optimal input signal to replicate the desired 

trajectory as much as possible. For the application of 

this type of Model Predictive Control a linearization 

of the system is required. The linearization is based 

on the small angle approximation as well as on the 

linearization at an operating point. The selected 

operating point in this case corresponds to the 

equilibrium position of the inverse pendulum. 

 

 
Fig. 1: Block diagram control loop 

 

The system is simulated using Simulink and Matlab. 

To test the functionality and the robustness of the 

arrangements, an initial angle is applied on the one 

hand and, on the other hand, noise is introduced into 

the system. Basically, the use of two control systems 

with different control variables, which are linked to 

each other, creates a conflict. The impact of this 

conflict will be analysed at the end of this work. 
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Both, the characteristics of the system and the 

mechanisms that will be used for controlling the 

inverse pendulum, can be found in different everyday 

life systems. For example, Segways have similar 

characteristics as the inverse pendulum. Therefore, 

similar rules can be used for controlling the Segway. 

Also, for the control of rockets during launch and 

landing as well as for the balancing of robots’ similar 

principles are used [5]. 

In the following sections, the system of the inverse 

pendulum is described (Chapter 2). Subsequently, 

steps for implementing the SMC (Chapter 3) and the 

MPC (Chapter 4) are explained. Finally, the 

behaviour of the controlled system is analysed 

(Chapter 5). 

 

 

2 Description of the System of the 

Inverse Pendulum 
The dynamic behaviour of the inverse pendulum can 

be described by the following equations of motion 

[6]: 

 

𝐽�̈�(𝑡) = −𝐹𝑔𝑙 𝑠𝑖𝑛𝛼(𝑡) + 𝑚𝑝�̈�(𝑡)𝑙 𝑐𝑜𝑠𝛼(𝑡) − 𝑘𝑤�̇�(𝑡), (1) 

(𝑚𝑝 + 𝑚𝐹𝑔𝑧)�̈�(𝑡) = 𝐹𝑐𝑠𝑖𝑛𝛼(𝑡) − 𝐹𝑇𝑐𝑜𝑠𝛼(𝑡) − 𝑘𝑙�̇�(𝑡) + 𝐹 (2) 

 

J corresponds to the moment of inertia of the 

pendulum, Fg is the weight force, l is the length of the 

pendulum, mp and mfzg are the mass of the pendulum 

and the vehicle, kw is a combination of air and rolling 

friction of the vehicle and kl is the friction in the point 

of contact between the vehicle and pendulum, FT the 

tangential force and Fc is the centrifugal force 

resulting from the rotational movement. The input 

parameter corresponds to the force F, which is 

applied directly to the cart. 

 

Table 1: Definition of equation symbols 

Meaning Equation 

Tangential force FT 𝐹𝑇 = 𝑚𝑝𝑙�̈�(𝑡) 
Centrifugal force FC 𝐹𝐶 = 𝑚𝑝𝑙 �̇�(𝑡)2 

Horizontal force For 𝐹𝑜𝑟 = 𝑚𝑝�̈�(𝑡) 
weight force Fg 𝐹𝑔 = 𝑚𝑝 𝑔 

moment of inertia J 𝐽 = 𝑚𝑝 𝑙
2 

torque M 𝑀 = 𝐽�̈�(𝑡) = 𝑚𝑝 𝑙
2 �̈�(𝑡) 

 

For simplicity, it has been assumed that the rod of the 

pendulum has no mass. The system is represented in 

figure 2. 

 

 
Fig.2: Representation of the system 

 

 

3 Implementation of Sliding Mode 

Control 
Sliding Mode Control is a very robust and accurate 

control system. Based on the Lyapunov theorem, the 

system can be controlled in the position of 

equilibrium, without knowing the solution of the 

underlying system of equations. For the 

implementation of the Sliding Mode Control a so-

called cost function s(t) must be set up, which is a 

target-actual comparison between the real and the 

desired output variables [3]. In the present case the 

angle between the pendulum and the vertical axis as 

well as the angular velocity of the pendulum are the 

control variables. 

 

𝑠(𝑡) = 𝑘 ∗ (𝛼𝑑(𝑡) − 𝛼(𝑡)) + �̇�𝑑(𝑡) − �̇�(𝑡)  . (3) 

The variable k was introduced as a factor for the 

weighting of the error between the desired and the 

actual angle. Since both, the desired angle 𝛼𝑑(𝑡) and 

the desired angular velocity �̇�𝑑(𝑡), are zero, the cost 

function results to:   
 

𝑠(𝑡) = 𝑘 ∗ (−𝛼(𝑡)) − �̇�(𝑡). (4) 

 

For the implementation of the Sliding Mode Control 

the equations need to be drawn up according to the 

following Lyapunov model: 

 

1a. 𝑉(𝑠(𝑡)) > 0, (5) 

1b. 𝑉(0) = 0, (6) 

2.   �̇�(𝑠(𝑡)) < 0. (7) 
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By choosing the function (8) for 𝑉(𝑠(𝑡)), condition 

1a is fulfilled. 

 

𝑉(𝑠(𝑡)) =
1

2
𝑠²(𝑡) (8) 

 

Accordingly, �̇�(𝑠(𝑡)) results to: 

In the subsequent step, the input F(t) is established so 

that the system can be controlled by cancelling most 

of the variables of the system. The resulting force is 

structured as follows: 

 

𝐹(𝑡) = −𝑘 ∗ �̇�(𝑡) ∗ 𝐽 ∗ (𝑚𝐹𝑔𝑧 + 𝑚𝑝) − 𝑚𝑝 ∗ 𝑔 ∗ 𝑙 ∗

𝑠𝑖𝑛𝛼(𝑡) ∗ (𝑚𝐹𝑔𝑧 + 𝑚𝑝) + 𝑚𝑝
2 ∗ 𝑙2 ∗ 𝑐𝑜𝑠𝛼(𝑡) ∗ �̇�2(𝑡) ∗

𝑠𝑖𝑛𝛼(𝑡) + 𝑚𝑝
2 ∗ 𝑙2 ∗ 𝑐𝑜𝑠2𝛼(𝑡) ∗ �̈�(𝑡) −  𝑘𝑙 ∗ �̇�(𝑡) ∗ 𝑚𝑝 ∗

𝑙 ∗ 𝑐𝑜𝑠𝛼(𝑡) ∗ (𝑚𝐹𝑔𝑧 + 𝑚𝑝) − 𝑘𝑤 ∗ �̇�(𝑡) ∗ (𝑚𝐹𝑔𝑧 + 𝑚𝑝) −

(𝛽 ∗ 𝑠𝑖𝑔𝑛(𝑘 ∗ −𝛼 − �̇�) . 

(11) 

 

As a result of the implementation of F(t) we gain for 

�̇�(𝑠(𝑡)): 

 

�̇�(𝑠(𝑡)) = 𝑠(𝑡) ∗ [−𝛽 ∗ 𝑠𝑖𝑔𝑛(𝑠(𝑡)) ∗
𝑙∗𝑐𝑜𝑠𝛼(𝑡)∗𝑚𝑝

𝐽∗(𝑚𝐹𝑧𝑔+𝑚𝑝)
+

𝑑(𝑡)

𝐽
]  . 

(12) 

 

To satisfy the statement in condition (7), 𝛽 needs to 

be: 

 

 

When implementing those functions in Matlab, it can 

be seen that the force switches back and forth very 

quickly between -100 N and 100 N. This 

phenomenon, which is called chattering, results from 

the use of the sign function. A corresponding fast 

switching of the input variables is often impossible or 

undesirable. To prevent this high-frequency 

"switching", a saturation function is used instead of 

the sign function. This prevents fast switching, 

because a linear function instead of a discontinuous 

function (sign function) is used within the defined 

range Φ. However, it should be noted that after using 

the saturation function, the accuracy of the control 

decreases [3]. 

 

 
Fig. 3: Saturation function 

 

By using the saturation function, the following force 

F(t) results: 

 

Fig. 4: Force F(t) without chattering in Sliding Mode 

Control 

Another weak point of the Sliding mode control is the 

relatively slow response time in the first phase of the 

scheme, also called "reaching phase". In order to 

reduce the time in which the desired value of the 

controlled variable is reached, another factor may be 

introduced that weights the error between the current 

setpoint and the actual value. If the current error is 

high, the input variable is adjusted accordingly [3]. In 

this case, a corresponding factor has not been 

implemented since the system’s response time is 

sufficient for the intended purpose.  

 

 

 

4 Implementation of Model Predictive 

Control 

�̇�(𝑠(𝑡)) = 𝑠(𝑡) ∗ �̇�(𝑡) = 𝑠(𝑡) ∗ [−𝑘 ∗ �̇�(𝑡) − �̈�(𝑡)]  ,  

 

(9) 

�̇�(𝑠(𝑡)) = 𝑠(𝑡) ∗ [−𝑘 ∗ �̇�(𝑡) −
𝑚𝑝∗𝑔∗𝑙∗𝑠𝑖𝑛𝛼(𝑡)

𝐽
−

𝑚𝑝
2∗𝑙2∗𝑐𝑜𝑠𝛼(𝑡)∗�̇�2(𝑡)∗𝑠𝑖𝑛𝛼(𝑡)

𝐽∗(𝑚𝐹𝑧𝑔+𝑚𝑝)
+

𝑚𝑝
2∗𝑙2∗𝑐𝑜𝑠²𝛼(𝑡)∗�̈�(𝑡)

𝐽∗(𝑚𝐹𝑧𝑔+𝑚𝑝)
+

 
𝑘𝑙∗�̇�(𝑡)∗𝑚𝑝∗𝑙∗𝑐𝑜𝑠𝛼(𝑡)

𝐽
−

𝑘𝑤∗�̇�(𝑡)

𝐽
+

𝐹(𝑡)

𝐽∗(𝑚𝐹𝑧𝑔+𝑚𝑝)
+

𝑑(𝑡)

𝐽
].  

(10) 

𝛽 > (𝑚𝐹𝑧𝑔 + 𝑚𝑝) ∗
max(𝑑(𝑡))

𝑙∗cos(𝛼)∗𝑚𝑝
 .  (13) 
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4.1 Linearization of the System 
To control the system via the chosen type of Model 

Predictive Control, it must be first linearized. For this 

purpose, two methods have been applied in this work. 

On the one hand, the angular functions are replaced 

based on the small angle approximation, that can be 

used for sufficiently small angles close to the 

operating point, by the following expressions: 

 

𝑠𝑖𝑛𝛼(𝑡) ≈ 𝛼(𝑡)     (Valid for sufficiently small angles), (14) 

𝑐𝑜𝑠𝛼(𝑡) ≈ 1          (Valid for sufficiently small angles). (15) 

 

On the other hand, quadratic parts of the function 

were linearized. The prerequisite for this is that the 

system is solely operated in the vicinity of the 

operating point, in this case the highest position of 

the pendulum. The more the system states deviate 

from this operating point, the greater is the error due 

to the linearization. On basis of the described 

linearization of the system, the equations of motion 

(16) and (17) are used hereafter: 

 

𝐽�̈�(𝑡) = −𝐹𝑔𝑙 𝛼(𝑡) + 𝑚𝑝�̈�(𝑡) 𝑙 − 𝑘𝑤�̇�(𝑡), (16) 

(𝑚𝑝 + 𝑚𝐹𝑔𝑧)�̈�(𝑡) = 𝑚𝑝𝑙�̇�(𝑡)𝛼(𝑡) − 𝑚𝑝𝑙�̈�(𝑡) − 𝑘𝑙�̇�(𝑡) +

𝐹(𝑡). 

(17) 

 

Since the values of the angle 𝛼, the angular velocity 

�̇� and thus the angular acceleration �̈� arising from the 

system using the Sliding Mode Control run against 

zero, the equation (17) can be simplified to the 

following function. 

 

(𝑚𝑝 + 𝑚𝐹𝑔𝑧)�̈�(𝑡) = −𝑘𝑙�̇�(𝑡) + 𝐹𝑀𝑃𝐶(𝑡) (18) 

 

𝐹𝑀𝑃𝐶(𝑡) constitutes the force that is generated by the 

Model Predictive Control. Based on the previous 

considerations, the relevant state-space system is 

reduced as follows: 

 

[
�̇�(𝑡)
�̈�(𝑡)

] = [

0 1

0
−𝑘𝑙

(𝑚𝐹𝑧𝑔 + 𝑚𝑝)
] [

𝑥(𝑡)
�̇�(𝑡)

]

+ 𝐹𝑀𝑃𝐶(𝑡) [

0
1

(𝑚𝐹𝑧𝑔 + 𝑚𝑝)
] 

(19) 

 

 

4.2 Implementation of the control 
For the implementation of the MPC the system 

equations (16) and (18) must be discretized first to 

obtain an explicit model. For this scheme, the 

forward Euler method, which is also known as 

explicit Euler method, can be used. By using this 

method, the following applies: 

 

𝑥(𝑡) = 𝑥(𝑘 − 1), (20) 

�̇�(𝑡) = �̇�(𝑘 − 1), (21) 

𝐹𝑀𝑃𝐶(𝑡) = 𝐹𝑀𝑃𝐶(𝑘 − 1), (22) 

 

and 

 

�̇�(𝑡) =
𝑥(𝑘)−𝑥(𝑘−1)

𝑇𝑠
, (23) 

�̈�(𝑡) =
�̇�(𝑘) − �̇�(𝑘 − 1)

𝑇𝑠

 
(24) 

with 𝑘 = 1, 2, … , 𝑛.  

 

Where 𝑇𝑠 corresponds to the sampling time for the 

discretization. Thus, the following system in matrix 

notation results: 

 

[
𝑥(𝑘)
�̇�(𝑘)

] = [

0 𝑇𝑠

0 1 −
𝑘𝑙  𝑇𝑠

(𝑚𝐹𝑧𝑔 + 𝑚𝑝)
] [

𝑥(𝑘 − 1)
�̇�(𝑘 − 1)

] + 𝐹𝑀𝑃𝐶(𝑘 − 1) [

0
𝑇𝑠

(𝑚𝐹𝑧𝑔 + 𝑚𝑝)
] 

    �̂�(𝑘)                    𝐴𝑘                              �̂�(𝑘 − 1)                                           𝐵𝑘 

(25) 

 

and  

𝑦(𝑘 − 1) = 𝐶𝑘 �̂�(𝑘 − 1)  (26) 

 

respectively  

 

�̂�(𝑘 + 1) =  𝐴𝑘�̂�(𝑘) + 𝐵𝑘 �⃗�𝑀𝑃𝐶(𝑘)          (27) 

𝑦(𝑘) = [
1
0

] �̂�(𝑘)  (28) 

with 𝑘 = 1, 2, … , 𝑛  

 
Based on these equations, the state variables for P 

steps can be predicted. For example, for k + 1: 

 

�̂�(𝑘 + 1) = 𝐶𝑘𝐴𝑘 �̂�(𝑘) + 𝐶𝑘𝐵𝑘 �⃗�𝑀𝑃𝐶(𝑘) (29) 

 

By the use of recursion, the two-step distant horizon 

is calculated as shown in (28): 
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�̂�(𝑘 + 2) = 𝐶𝑘𝐴𝑘
2�̂�(𝑘) + 𝐶𝑘𝐴𝑘𝐵𝑘 �⃗�𝑀𝑃𝐶(𝑘) + 𝐶𝑘𝐵𝑘�⃗�𝑀𝑃𝐶(𝑘

+ 1) 

(30) 

 

For the controlled variable the following prediction 

can be applied:  

 

�⃗⃗�(𝑘) = [�̂�(𝑘 + 1) �̂�(𝑘 + 2) … �̂�(𝑘 + 𝑃)]𝑇 (31) 

�⃗⃗�(𝑘) = 𝐺�⃗�(𝑘) + 𝐻�⃗�𝑀𝑃𝐶(𝑘) (32) 

 

With the general matrices that apply for G and H: 

𝐺 = [

𝐶𝑘𝐴𝑘

𝐶𝑘𝐴𝑘
2

…
𝐶𝑘𝐴𝑘

𝑃

] 

(33) 

and 𝐻 = [

𝐶𝑘𝐵𝑘 0 … 0

𝐶𝑘𝐴𝑘𝐵𝑘 𝐶𝑘𝐵𝑘 … 0
…

𝐶𝑘𝐴𝑘
𝑃−1𝐵𝑘

…
𝐶𝑘𝐴𝑘

𝑃−2𝐵𝑘

…
…

…
𝐶𝑘𝐵𝑘

] 

(34) 

 
The following matrices result for the described 

system of the inverse pendulum with a chosen 

prediction horizon of two steps:  

𝐺 = [
𝐶𝑘𝐴𝑘

𝐶𝑘𝐴𝑘
2] and 𝐻 = [

𝐶𝑘𝐵𝑘 0

𝐶𝑘𝐴𝑘 𝐵𝑘 𝐶𝑘𝐵𝑘

] 
(35) 

 
Hereinafter, an input signal is derived so that the 

deviation between the desired trajectory and the 

actual signal is minimized. For this purpose, the 

following cost function is used: 

 

𝐽 =
1

2
(𝑌𝑟

⃗⃗⃗⃗ (𝑘) − �⃗⃗�(𝑘))
𝑇

𝑄 (𝑌𝑟
⃗⃗⃗⃗ (𝑘) − �⃗⃗�(𝑘)) 

       +
1

2
�⃗�𝑀𝑃𝐶

𝑇
(𝑘) 𝑅 �⃗�𝑀𝑃𝐶(𝑘). 

(36) 

 

Q and R are weighting matrices for the input and the 

output signal. The solution for the input signal in 

order to minimize the cost function and thus keeping 

the error between the desired and actual value as 

small as possible, is calculated by: 

 

�⃗�𝑀𝑃𝐶 = (𝐻𝑇𝑄𝐻 + 𝑅)−1 𝐻𝑇𝑄 (𝑌𝑟
⃗⃗⃗⃗ − 𝐺𝑋(𝑘)). (37) 

 

The resulting block diagram of the controlled system 

by SMC and MPC is shown in figure 5.

  

Fig. 5: Block diagram of controlled system by SMC and MPC 
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5 Behavior of the system 
The results after the implementation of the Sliding 

Mode Control are shown in Fig. 6 and 7. The 

parameters of the system were chosen as: 𝑚𝐹𝑧𝑔 =

1 𝑘𝑔,  𝑚𝑝 = 0,1 𝑘𝑔, 𝑙 = 1 𝑚, 𝑔 = 9,81
𝑚

𝑠²
, 𝐽 =

𝑚𝑝 ∗ 𝑙2,  𝑘𝑙 = 2
𝑁𝑠

𝑟𝑎𝑑
, 𝑘𝑤 = 5

𝑁𝑠

𝑚
, 𝛼0 = 0,5 𝑟𝑎𝑑,

�̇�0 𝑎𝑛𝑑 �̈�0 = 0, 𝑥, �̇� 𝑎𝑛𝑑 �̈� = 0 .  
 

Table 2: assigned values for of equation symbols 

Equation-

symbol 

Meaning Value Unit 

mp Mass pendulum 0,1 kg 

M Mass cart 1 kg 

l Length 

pendulum 

1 m 

g Gravitat. 

constant 

9,81 m/s2 

𝛼 Angle -0,5 rad 

�̇� Angular velocity - rad/s 

�̈� Angular 

accelerat. 

- rad/s2 

x Position - m 

�̇� Velocity - m/s 

�̈� Acceleration - m/s2 

kW Friction cart 5 Ns/m 

kP Friction 

Pendulum 

2 Ns/rad 

F Applied force - N 

 

In addition, two disturbances were implemented that 

were directly applied to the angular acceleration �̈�. 

The first disturbance amounts to 10
𝑟𝑎𝑑

𝑠
 for 0.1 s at 10 

s and the second disturbance amounts to −10
𝑟𝑎𝑑

𝑠
 for 

0.1 s at 20 s. 

 

 
Fig. 6: Angle of the pendulum (Controlled by means 

of SMC) 

 

 
Fig. 7: Angular velocity of the pendulum 

(Controlled by means of SMC) 

 

The convergence of the state variables angle 𝛼 and 

angular velocity �̇� can be achieved by using the 

SMC. Even after the implemented disturbances, the 

system reaches an angle and an angular velocity close 

to zero within a short time. This reflects the 

robustness of the Sliding Mode. 

The figures 8 and 9 show how the results change after 

implementing the Model Predictive Control as the 

second control system. The parameters of the system 

were maintained in this case. The sampling time 𝑇𝑠 =
0,25 𝑠 and the weighting matrices Q and R were 

added: 

 

𝑄 = 1000 ∗ [
1 0
0 1

] and 𝑅 = [
1 0
0 1

]. (38) 

 

This results in the system behaving as follows: 

 

 
Fig. 8: Angle of the pendulum (SMC and MPC) 
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Fig. 9: Angular velocity of the pendulum (SMC and 

MPC) 

 

From the comparison of the angle of the SMC-

controlled system on the one hand and the SMC & 

MPC-controlled system on the other hand, it can be 

seen that the rate, at which the angle is regulated, is 

reduced. This result is obtained because of the 

differing objectives of the two schemes. Since the 

cart moves at a certain trajectory, acceleration and 

speed of the cart are limited. In this case, both forces 

push the cart in the same direction. In figure 10 the 

position of the cart is represented.  

 

 
Fig. 10: Comparison of target and actual position 

 

It is noticeable when comparing the desired and 

actual position, that the actual path of the system 

exceeds the target value. The system shows the same 

behaviour without external disturbance. This 

deviation is a phenomenon that occurs because of the 

conflict of the two parallel-operated control systems. 

In addition, the accuracy of the MPC is reduced by 

the chosen simplifications and the linearization. As a 

result, there may be a deviation between the desired 

and the obtained position. 

 

 
Fig. 11: Force FMPC 

 

As a consequence of the superposition of the input 

signals and the deviating behaviour of the cart and the 

pendulum in comparison to the previous, solely 

SMC-controlled system, the force, that is determined 

by the Sliding Mode Controller, changes. This force 

is shown in figure 12. 

  

 
Fig. 12: Force FSMC 

 

It is noticeable that the force switches back and forth 

with a high frequency because of the conflict of the 

two input variables despite the implemented 

saturation function. In this way, both control systems 

attempt to balance the influence of the respective 

other control. 

Even though the two control systems influence each 

other, there is a relatively high robustness against 

external disturbances. Certain deflections of the 

angle, the angular velocity and position are visible, 

indeed. However, the speed at which the system is 

reacting is still relatively high. 

In order to further validate the control on the one 

hand, and to analyse the influence of the 

superposition of the controls on the other hand, a 

second simulation was carried out. This time the 

initial angle was set to -0.5 rad. The corresponding 

behaviour of the system is shown in figure 13. 
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Fig. 13: Angle of the pendulum (SMC and MPC) 

with a negative initial angle 

 

By analysing this behaviour, it is apparent that the 

two controls influence each other. It becomes clearly 

recognizable, e.g., when looking at the time required 

for the control of the angle compared to the solely 

SMC-controlled system. 

 

Fig. 14: Target and actual position with a negative 

initial angle 

 

 

5 Conclusion and Outlook 
The results of this work demonstrate that the use of 

two different sets of controllers leads to a conflict for 

the system of the inverse pendulum. For example, a 

rapid switching of the force as an input signal is 

necessary in spite of the implemented saturation 

function. 

 

 

 

 

 

 

 

 

 

 

 

An expansion and deeper analysis of the impact is 

possible through the construction of a physical 

system. For this, a cart with servo motors could be 

implemented on a rail system. Using such structure, 

the results could be further validated. 
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